The National Academies

The National Academies: What You Need To Know About Energy

What You Need To Know About Energy

What do you know about energy?

Renewable energy (solar, wind, geothermal, hydroelectric, biofuels, waste, and wood) accounted for what percentage of the total energy supply in the United States in 2014?

  • Correct!

    In 2014, 10% of our total energy use came from renewable energy sources, such as biomass, wind, solar, and hydropower.

  • Sorry, that’s incorrect.

    In 2014, 10% of our total energy use came from renewable energy sources, such as biomass, wind, solar, and hydropower.

  • Sorry, that’s incorrect.

    In 2014, 10% of our total energy use came from renewable energy sources, such as biomass, wind, solar, and hydropower.

  • Sorry, that’s incorrect.

    In 2014, 10% of our total energy use came from renewable energy sources, such as biomass, wind, solar, and hydropower.

On average, which is most efficient in coverting heat into electic power?

  • Sorry, that’s incorrect.

    On average, a typical coal-burning power plant in 2013 was about 33% efficient in converting heat energy into electrical power. A gas-fired plant was about 42% efficient. And in natural gas combined-cycle power plants—in which waste heat from a natural gas turbine is used to power a steam turbine—generation may be as much as 60% efficient.

  • Sorry, that’s incorrect.

    On average, a typical coal-burning power plant in 2013 was about 33% efficient in converting heat energy into electrical power. A gas-fired plant was about 42% efficient. And in natural gas combined-cycle power plants—in which waste heat from a natural gas turbine is used to power a steam turbine—generation may be as much as 60% efficient.

  • Correct!

    On average, a typical coal-burning power plant in 2013 was about 33% efficient in converting heat energy into electrical power. A gas-fired plant was about 42% efficient. And in natural gas combined-cycle power plants—in which waste heat from a natural gas turbine is used to power a steam turbine—generation may be as much as 60% efficient.

On average, how much solar radiation reaches each square meter of earth?

  • Sorry, that’s incorrect.

    On average, even after passing through hundreds of kilometers of air on a clear day, solar radiation reaches Earth with enough energy in a single square meter to run a mid-size desktop computer-if all the sunlight could be captured and converted to electricity.

  • Correct!

    On average, even after passing through hundreds of kilometers of air on a clear day, solar radiation reaches Earth with enough energy in a single square meter to run a mid-size desktop computer-if all the sunlight could be captured and converted to electricity.

  • Sorry, that’s incorrect.

    On average, even after passing through hundreds of kilometers of air on a clear day, solar radiation reaches Earth with enough energy in a single square meter to run a mid-size desktop computer-if all the sunlight could be captured and converted to electricity.

True or false? Carbon capture and storage would reduce energy efficiency of a coal plant?

  • Correct!

    Carbon capture and storage will reduce energy efficiency of a coal plant, though it will decrease carbon emissions.

  • Sorry, that’s incorrect.

    Carbon capture and storage will reduce energy efficiency of a coal plant, though it will decrease carbon emissions.

In 2014, of the four economic sectors, which used the most energy in the United States?

  • Sorry, that’s incorrect.

    In 2014, the industrial sector represented 32% of U.S. energy use, while transportation was 28%. Residential and commercial were 22% and 19% respectively.

  • Sorry, that’s incorrect.

    In 2014, the industrial sector represented 32% of U.S. energy use, while transportation was 28%. Residential and commercial were 22% and 19% respectively.

  • Correct!

    In 2014, the industrial sector represented 32% of U.S. energy use, while transportation was 28%. Residential and commercial were 22% and 19% respectively.

  • Sorry, that’s incorrect.

    In 2014, the industrial sector represented 32% of U.S. energy use, while transportation was 28%. Residential and commercial were 22% and 19% respectively.

Which has been growing more, energy used by lighting and appliances or energy used for heating and cooling?

  • Correct!

    For decades, more than half of all residential energy use went  to space heating and cooling; in 1993, it accounted for nearly 60%. But EIA data show that by 2009, that share had dropped to 48%. And in the period 1993 to 2009, energy for appliances, electronics, and lighting rose from 24% to 35%, owing to the proliferation of appliances, as well as trends toward larger TVs and other devices.

  • Sorry, that’s incorrect.

    For decades, more than half of all residential energy use went  to space heating and cooling; in 1993, it accounted for nearly 60%. But EIA data show that by 2009, that share had dropped to 48%. And in the period 1993 to 2009, energy for appliances, electronics, and lighting rose from 24% to 35%, owing to the proliferation of appliances, as well as trends toward larger TVs and other devices.

The consumption of energy in the United States is projected to rise by how much between 2013 and 2040?

  • Sorry, that’s incorrect.

    U.S. energy consumption is projected to rise 9% by 2040, or 0.3% per year, while global consumption will increase about 50% over the same period

  • Sorry, that’s incorrect.

    U.S. energy consumption is projected to rise 9% by 2040, or 0.3% per year, while global consumption will increase about 50% over the same period

  • Correct!

    U.S. energy consumption is projected to rise 9% by 2040, or 0.3% per year, while global consumption will increase about 50% over the same period

  • Sorry, that’s incorrect.

    U.S. energy consumption is projected to rise 9% by 2040, or 0.3% per year, while global consumption will increase about 50% over the same period

Which renewable energy source contributed the most to the total energy consumed in the United States in 2014?

  • Sorry, that’s incorrect.

    Wood and waste biomass, along with biofuels, accounted for about 50% of the U.S. renewable energy supply in 2014, and more than 4% of all energy consumed. 

  • Sorry, that’s incorrect.

    Wood and waste biomass, along with biofuels, accounted for about 50% of the U.S. renewable energy supply in 2014, and more than 4% of all energy consumed. 

  • Correct!

    Wood and waste biomass, along with biofuels, accounted for about 50% of the U.S. renewable energy supply in 2014, and more than 4% of all energy consumed. 

  • Sorry, that’s incorrect.

    Wood and waste biomass, along with biofuels, accounted for about 50% of the U.S. renewable energy supply in 2014, and more than 4% of all energy consumed. 

How efficient are ordinary commercial solar cell units?

  • Sorry, that’s incorrect.

    As of 2014, the very best experimental units could convert more than 40% of light energy to electricity; ordinary commercial units are in the range of 5% to 20%. 

  • Sorry, that’s incorrect.

    As of 2014, the very best experimental units could convert more than 40% of light energy to electricity; ordinary commercial units are in the range of 5% to 20%. 

  • Correct!

    As of 2014, the very best experimental units could convert more than 40% of light energy to electricity; ordinary commercial units are in the range of 5% to 20%. 

  • Sorry, that’s incorrect.

    As of 2014, the very best experimental units could convert more than 40% of light energy to electricity; ordinary commercial units are in the range of 5% to 20%. 

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Place this badge on your facebook page to show your friends what you know about energy.

Get the badge

OR, get a higher score to unlock a different badge.

Retake the quiz

Explore Other Topics

Energy Hands-on

The Promise of Better Lighting

Energy savings through lighting technology

Energy Defined

Pulverized Coal

Coal that has been crushed into a fine dust prior to combustion, allowing the coal to burn more rapidly and efficiently.

View our full glossary